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Definition of intelligence? Many! None perfect

One simple definition of intelligence, but has issues :
(Dictionary)

Ability to acquire ... : “Machine learning”

Lack of precise definition unfortunately contributes to misunderstandings and hype.
What’s Al, what’s not?
Sometimes overused and hyped buzzword

Lack of precise definition =>
Difficult to design benchmarks that cannot be gamed
Performance on specific benchmark does not necessarily indicate general performance
Can lead to inflated claims or interpretations

R. J. Sternberg [1]: “Viewed narrowly, there seem to be almost as many definitions of intelligence as there were experts asked to define
it”. Legg & Hutter, “A Collection of Definitions of Intelligence”, lists over 70 definitions[2]
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Symbolic (Good Old Fashion Al)

Objects are represented with symbolic data structures, behavior is explicitly programmed

Objects: Attributes and methods class animals, subclass dog, cat, ...
Behavior: if x in animals then .. control flow if, while, for, ...
Subsymbolic, neuroscience inspired

Objects are represented over a large number of simple interconnected processing units,
symbols and behavior emerge

dogs = ¥ 2 0 00 RS OI0® 0{3.220 030 0]
cats = ROLESH OO St Sl OO Sgasaesl .0 3200 0 ¢ 3
Symbols and learned behavior emerges
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Al History

= ldea of intelligent machines almost or as old as computers

= Two approaches as old:

CoIIosus Computer, 1943

=  Turing machines, 1936, Turing Test, 1950 (“Symbol Processing” )

=  McCullogh and Pitts, 1943

A LOGICAL CALCULUS OF THE
IDEAS IMMANENT IN NERVOUS ACTIVITY

WARREN S. MCCULLOCH AND WALTER PITTS

FroM THE UNIVERSITY OF ILLINOIS, COLLEGE OF MEDICINE,
DEPARTMENT OF PSYCHIATRY AT THE [LLINOIS NEUROPSYCHIATRIC INSTITUTE,
AND THE UNIVERSITY OF CHICAGO

Because of the “all-or-none” character of nervous activity, neural
events and the relations among them can be t by means of propo-
sitional logic. It is found that the behavior of every net can be described
in these terms, with the addition of more complicated logical means for
nets containing circles; and that for any logical expression satisfying
ertain conditions, one can find u net behaving in the fashion it describes.
It is shown that many particular choices among possible neurophysiologi-
cal assumptions aro equivalent, in the sonse. that for every net behav-
ing nder one asgumption, thero exists ‘another net. whieh behaves n-
der the other and gives the same results, although perhaps not in the
Same time. Various applications of the caloulus are Macussed.

L. Introduction

Theoretical neurophysiology rests on certain cardinal assump-
tions. The nervous system is a net of neurons, each having a soma
and an axon. Their adjunctions, or synapses, are always between the
axon of one neuron and the soma of another. At any instant a neuron
has some threshold, which excitation must exceed to initiate an im-
pulse. This, except for the fact and the time of its occurrence, is de-
termined by the neuron, not by the excitation, From the point of ex-
cxtauon the xmpu]se is pmpxgaced m all parts of the neuron The

130 LOGICAL CALCULUS FOR NERVOUS ACTIVITY
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MIND

A QUARTERLY REVIEW

OF
PSYCHOLOGY AND PHILOSOPHY
e
L—COMPUTING MACHINERY AND
INTELLIGENCE

BY A. M. TURING

1. The Imiration Game.

1 PROPOSE to consider the question, ‘Can machines think?’ This should
begin with definitions of the meaning of the terms ‘machine’ and
think’. The definitions might be framed so as to reflect so far as
possible the normal use of the words, but this attitude is dangerous. If
the meaning of the words ‘machine” and ‘think are to be found by
examuning how they are commonly used it is difficult to escape the
conclusion that the meaning and the answer to the question. ‘Can

Turing, 1936

“Subsymbolic Processing, NeuroScience inspired” :

READ/WRITE TAPE

Peter Dey
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Brain: ~ 86 * billion neurons, 100 Trillion synapses

100,000 miles nerve fibers. And ... an absolute mess!

Very poorly understood

K. H. Masiand (2007). "Neuronal Giversity in e reuni
i 2 E Curr. Opin. Neurobiol. 11; 431-436.

! Hundreds of different nerve cells

ﬁ b Connectomics: 1 mm3 from actual microscopy of

3 i : : ? 30nm thick slices of actual rat brain. Lichtmann

Golgi, Cajal 1906 Nobel Prize
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McCullogh and Pitts Model, 1943

Fixed connections, neurons fire (activate) when a
sufficient number of connected (via synapses) neurons fire

Hebb, 1949: Learning "Cells that fire together wire together.”

Aw, =n.out .in,

Modern form: Come up with an Objective function
measuring output errors. (Euclidian distance of response vs

desired responses for instance)

Change weights (learning) to minimize objective function
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A Netdrapsychological Tiicory
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Hebb 1949



Perceptrons, 1957

=  Frank Rosenblatt, Cornell

=  Analog computer
implementation

Modern formalization:

Input X = (X4, ...,Xq)

Olivier J. Brousse 3/26/2020

‘ Output f(x) = (1)

N

activatior
functic

x*w)+b>0
otherwise

CLOCALITED
CONNSETONS)

Psychological Review
Val. 65, No. 6, 1958

RANDD
CONRECTIONE)

RIIPONAED

THE PERCEPTRON: A PROBABILISTIC MODEL FOR
INFORMATION STORAGE AND ORGANIZATION
IN THE BRAIN?

F. ROSENBLATT

Cornell Aeronautical Laboratory

If we are eventually to understand
the capability of higher organisms for
perceptual recognition, generalization,
recall, and thinking, we must first
have answers to three fundamental
questions :

1. How is information about the
physical world sensed, or detected, by
the biological system?

2. In what form is information
stored, or remembered ?

3. How does information contained
in storage, or in memory, influence
recognition and behavior?

‘The first of these questions is in the
province of sensory physiology, and is
the only one for which appreciable
understanding has been achieved.
‘This article will be concerned pri-
marily with the second and third
questions, which are still subject to a

. P 1 1

and the stored pattern. According to
this hypothesis, if one understood the
code or ‘'wiring diagram’’ of the nerv-
ous system, one should, in principle,
be able to discover exactly what an
organism remembers by reconstruct-
ing the original sensory patterns from
the ““memory traces' which they have
left, much as we might develop a
photographic negative, or translate
the pattern of electrical charges in the
“memory” of a digital computer.
This hypothesis is appealing in its
simplicity and ready intelligibility,
and a large family of theoretical brain
models has been developed around the
idea of a coded, representational mem-
ory (2,3,9, 14). The alternative ap-
proach, which stems from the tradi-
tion of British empiricism, hazards the
guess that the images of stimuli may
never really be recorded at all, and
that the central nervous svstem
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Learning implementation: Gradient Descent in weight Space

Gradient descent: Minimize objective function F(w) by substracting from w a fraction
(learning rate) of F(w) derivative with respect to w (gradient)

Gradient Descent Local Minima

1(w)

e | nitial
weight

=
=

W)

mi

v

dy dy
* Generalization to multi dimensional space (all' ' Eﬂ
y = f(x), gradient of y with respect to x is J=1 l
. . . . . a L ay'ﬂ'& 3
the Jacobian matrix J of partial derivatives: 01—1 B




Perceptron: Python Linear Classifier Toy Example

Problem: Learn to discriminate between + and - points)

6 +

5 |

4 - +

3t

2 +
| _

’ -2 0 2 4 6
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Perceptron: Python Linear Classifier Toy Example

Olivier J. Brousse 3/26/2020

+
(1,5)->+1
Input  Output
- = +
(-2,4)->-1 (2,4)->+1
| Input  Output Input  Output
+
(6,2) > +1
— Input  Output]
4,1)->-1
. . Input, Output
=2 0 2 4 6
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Perceptron: Python Linear Classifier Toy Example
Test:

=  Perceptron convergence Theorem (Informal description): ;

If there is a solution, perceptron learning will converge to the solution.

;J/H“«' Y1 LJU ‘ e ¢
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Perceptron: Python implementation with gradient descent learning

Note: We use hinge loss for objective function for historical reason
HL(Output) = max (0, (1 — DesiredOutput*Output))

import numpy as np

X = np°arraY([ [_2141_1]1[4111_1]I[1161_1]1[2141_1]I[612I_1]]) \
#5 inputs (points in 2d + -1 bias)

y np.array([-1,-1,1,1,1]) # 5 Targets (Plot + or - labels)

Loss function
def perceptron(X, Y):

w = np.zeros(len(X[0])) # Weights to be modified
eta =1
epochs = 20
for e in range (epochs) :
for i, x in enumerate (X):
if (np.dot(X[i],w)*Y[i]) <= O:
w=w + eta*X[1]*Y[1i] #Update w with -gradient

return w
w = perceptron(X,y)
print (w) #Weights solution
After https://github.com/MaviccPRP/perceptron

= 3 ) ) (TR 3
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https://github.com/MaviccPRP/perceptron

Perceptron: Python implementation with gradient descent learning

import numpy as np

X = np'arraY([ [_2141_1]1[4111_1]l[1161_1]1[2141_1]I[612I_1]])
#5 inputs (points in 2d + -1 bias)

y np.array([-1,-1,1,1,1]) # 5 Targets (Plot + or - 1labels)

def perceptron(X, Y):
w = np.zeros(len(X[0])) # Weights to be modified
eta =1
epochs = 20 Error measured with hinge loss function:

. - HL(Output) = max [0, (1 — DesiredOutput*Output)]
for e in range (epochs) :

for i, x in enumerate(X): A~
if (np.dot(X[i], w) * Y[i]) <= O:

Output HL (wX[i]) = max [0, (1 - Y[i] * wX[i])]

Gradient (Error) { dHL (w)/dw = d(max[0, 1 — (Y[i] * wX[i]))/dw

o W =w + eta*X[i]*Y[1] =0 LY *wX[] > 0
return w ) =-eta* (- X[i{]Y[i]) if 1-Y[i]*wX[i] <=0
— v
w = perceptron (X,y) L Gradient .

print (w) #Weights solution
After https://github.com/MaviccPRP/perceptron

Olivier J. Brousse 3/26/2020 A= IRDU L\@U/ 3DVista



https://github.com/MaviccPRP/perceptron

1970’s Temporary end of Neural Networks!

Minsky & Papert, 1969
What about other functions? ! ExpandsdiBiition

* How about Boolean operations?
= AND ? OR ?
= xXOR ? X Nocando! Perceptrons

“ Need linear separability

= Expectations were inflated

Marvin L. Minsky
AND OR XOR Seymour A. Papert

e = [N] w -~ w o ~

Olivier J. Brousse 3/26/2020 /Tﬁ J\JUDML@ 3DVistas




Meanwhile ... 50’s onward, symbolic Al

= Development of what is now called GOFAI (Good Old Fashion Al)

= Reinforcement Learning Expert systems, probabilistic models, use of Markof decision
processes, models of reasoning, natural language processing, Search algorithms, etc ...

=  But: Inflated expectations also!

=  => First “Al Winter”:

ARPY T 3DVist

Popularity

New Hopes

inflated
H‘ypc 1 '
1 ! Al winter Il

Al wlinter | |
1 : '

E
[3 1
M ]
N 1}
M '
: i
1950 1956 1974 1980 1987 1993 Time




Mid 80’s, rebirth: Connectionism

Hinton and Anderson, Rumelhart, McClelland

1981 and the PDP Group, 1986
= PDP Group: Multi disciplinary group of researchers.

= Key contributions:

= Learning with Backpropagation®, for multilayer networks, with eg sigmoid squash,

= Recurrent network architecture allowing processing in time (Backpropagation through time)
= Restricted Boltzmann machines, Boltzmann machines, ...

*  Many applications: Linguistic morphology, sentence processing, speech perception.

*  Formulation of Subsymbolic (vs symbolic Al) theory of mind:

Massively distributed representations Graceful degradation Noise resistance

Processed in parallel Symbols emerge from patterns of activation

*Independently discovered, prior art: Werbos, others

ARDUPEET 3DVistas
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Multilayer Network: How can they learn?
Backpropagation

Activation Functions

5 =g(00+X70)

)
9\‘

L Outpul 6, E T f 5 *  Example: sigmoid function

‘ii_”"l = / i

2 B, g(l)—o(l)—m
1
Xm
Inputs  Weights ~ Sum  Non-Linearity Output
-6 -4 -2 AH 2 4 6 z

= @General Idea: Use the chain rule for derivatives:

Inpul First Second Oiput
laver hidden midden layer
laver lover

= Use sigmoid or similar to allow for gradients

= F(x) =f(g(x)) => F’(x) = f'(g(x)) * g’(x) Use multivariable calculus: Jacobian to correct
weight error.

= Store weight values on forward pass, then propagate error backward towards previous
layers and change weights

Olivier J. Brousse 3/26/2020 //ﬁjtxj/\_/uﬁudu@ﬂf 3DVistas




Theoretical result:

Any continuous function can be learned with
arbitrary precision with a neural network with one
hidden layer (given enough hidden units)

Harder classification Problem that the perceptron
we saw earlier cannot solve:

2 =


http://playground.tensorflow.org/#activation=relu&batchSize=10&dataset=spiral&regDataset=reg-plane&learningRate=0.01&regularizationRate=0&noise=0&networkShape=8&seed=0.69254&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=true&xSquared=true&ySquared=true&cosX=false&sinX=true&cosY=false&sinY=true&collectStats=false&problem=classification&initZero=false&hideText=false

DATA

Which dataset do
you want to use?

®

Ratio of training to
test data: 50%

Noise: 10
—9

Batch size: 10
—y————

REGENERATE

Epoch

000,000

FEATURES

Which properties do
you want to feed in?

XX .‘

sin(X,)

sin(X,)

Learning rate Activation Regularization Regularization rate

0.01 - RelLU - None v 0 -

Problem type

Classification -

+ — 2 HIDDEN LAYERS OUTPUT
' J Test loss 0.506
F = S = Training loss 0.491
8 neurons 8 neurons

Colors shows

data, neuron and 5 (') —1

weight values.

[ Showtestdata [] Discretize output

This is the output
from one neuron. weights, shown
Hover to see it by the thickness of
larger. the lines.

mixed with varying


https://playground.tensorflow.org/
https://playground.tensorflow.org/

Temporal learning and processing of data sequences in time

General Idea: Use recurrent connections from hidden layer back to itself; Combine input
layer at time t with hidden layer at time t-1

Raimi Karim

2=}




But ... Mid-90s: Second Al Winter!

Popularity

NNs are data hungry, too little data

New Hopes

NNs are compute hungry, too little compute

! Al winter Il

Hype and over promises

1 ]
|Al winter | |
1 | '

i i
| L
1950 1956 1974 1980 87 1993 Time

T —— - —— —
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Meanwhile, however ...

Yann Lecun, Bell Labs
Handwr

itten digit recognition

O - AN M < 1N OO O
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J

Network training

f
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Data & Labels
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Convolution Neural Network

= Hierarchical processing, inspired by some cells in visual cortex: Some cells respond
specifically to certain features like edges => Filters

= Idea: Intermediate layers detect features increasingly more complex

=  Two new kind of layers: Convolution and pooling layers

conv2 feature maps
convl feature maps 14x14x32
28x28x16

pool2 feature maps  FC1: 128
TXT%32 =

pooll feature maps
14x14x16

OUT: 10

" Full connection

convolution max-pool convolution max-pool Full connection
(k=5, F=16, s=1) (=2, 5=2) g (S
= ) U—x ‘ e 7 j +
/ < / = =
ARDODIEET 3DVistas




Convolution Neural Network: Pooling

convl feature maps

28x28x16

pooll feature maps

14x14x16

max pooling

20

12

20

30

8

12

34

70

37

112

30
37

I

average pooling

112

100

25

Pooling

13

79

8
20

Olivier J. Brousse 3/26/2020

conv2 feature maps
14x14x32
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Central to signal processing, filters

Continuous: (f *g)(t) = j f(g(t — 1) dt

| T I T T I I I I

L SERERRTRRE SERERREREE e — |:|ﬁrea under fiogit-o) F
1] SR L R S fix) |
iR = | R T TR ait-x)

; : : : (i)
|:|4_. .......... \ .................... .......... R =
n_z_é .......... e R EETETT S R e L -

o ! L | i L | L

-2 1.5 1 0.5 o 0.4 1 1.5 b

&t




Convolutions

Continuous: (f *x g)(t) = J f(g(t— 1) drt

Discrete: (f x g)[n] = Z flm] g[n — m]

1x:|. 1x0 1x1 0 0
0:0 1x1 1:0 1 0 4
0,001 1)1
0|0|(1(1]|0
0|1(1/0]|0
Image Convolved
Feature

Padding; Stride (step)

Vertical Edge
(absolute value)

Horizontal Edge
(absolute value)

Vertical and horizontal edge filters

3DVistas
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http://yann.lecun.com/exdb/lenet/index.html

feNet 5 RESEARCH
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http://yann.lecun.com/exdb/lenet/index.html

http://yann.lecun.com/exdb/lenet/index.html
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http://yann.lecun.com/exdb/lenet/index.html

LSTMs: Solving the problem of vanishing gradients

=  Hochreiter & Schmidhuber, 1991, 1995
*  Long Short Term Memory. “Selectively remember or forget”

= Later used with sequence to sequence networks:

"The weather s nice" "[START]I1l fait beau"

00 LSTM | LSTM
P encoder | decoder
hidcen tate Internal LSTM
000 states (h, c)

X, "Il fait beau[STOP]"

input

Animation credit: Raimi Karim

Olivier J. Brousse 3/26/2020 J ‘::/ UE/J@\J J/ mQ\{l U@S
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Max
pool

CNNs: 2012 AlexNet

7 128

Kgl

i

128 Max
Ing pooling

container ship

192

192

motor scooter

“leopard

4 \
\ x'ﬁ \ /
oS L
\ / 70@8 \ / 10as \dense
x)\ ] ] I\.
/ \_ \
/ Y / \
/ 1 7 +
L E—
dense dense
1000
128 Max L L
pooling 2048 2048

-t

container ship

motor scooter

black widow
cockroach
tick

starfish

lifeboat
amphibian
fireboat

drilling platform

legpard

go-kart
moped
bumper car
golfcart

jaguar
cheetah
snow leopard
Egyptian cat
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Most is supervised Learning, but let’s not forget:

Unsupervised Learning eg autoencoders
Reinforcement Learning

3DVistas
Drones for Research and Industry



Reinforcement Learning

=  Rich Al history from the 50’s

= Inits simplest form:

= Agent evolves in environment of states, performing actions leading to successive

states, following a policy with rewards and penalties
= Learning consists in finding best policy maximizing rewards

= ltis possible to learn policy with neural network.

state reward action
S R, A,

7

.




Reinforcement Learning: A simple example (2016)
http://karpathy.github.io (Highly recommended if new to RL. Policy gradients)

Learn policy from raw pixels
=  Well worth a close look:

130 lines Python implementation

raw pixels hidden layer

Start

UP DOWN up (U] =] DOWN DOWN DOWN (0=l WIN

o OGP g UP QUOWNG WP o UP o LOSE

o " .o P g DOWN g DOWN JDOWN o DOWN o UP o LOSE

o OGP g UP GUOWN S UP o UP o WIN |
i .

2 [ﬂ "y WULO’L
Olivier J. Brousse 3/26/2020 /77\4 NG, PN 93[2}./' ta



http://karpathy.github.io/
http://karpathy.github.io/
http://karpathy.github.io/

Reinforcement Learning: A simple example (2016)
http://karpathy.github.io (Highly recommended if new to RL with policy gradients)

Learn policy from raw pixels
=  Well worth a close look:

130 lines Python implementation

raw pixels hidlayer
SO\ Ty
%'W ~ % training

UP DOWN UP uP DOWN DOWN DOWN uP WIN
@O0 gUP o UP gDOWN G UP o P o LOSE
o " . P g DOWN g DOWN JDOWN o DOWN o UP o LOSE
o OGP g UP gUOWN G P o UP o WIN |
H u
L
Olivier J. Brousse 3/26/2020 AAINE O2le) 3DVista



http://karpathy.github.io/
http://karpathy.github.io/
http://karpathy.github.io/

Residuals Networks (ResNet)

GANS: Generative Adversarial Networks (two networks)
Attention networks

Auto encoders (Unsupervised learning)

Variational Autoencoders

Restricted Boltzman machines

Boltzman Machines

3DVistas



i R >

A :

- Backfed Input Cell
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© Noisy Input Cell
W
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P
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Generative Adversial Liquid State Extreme Learning Echa Network
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Deep Residual Netwark (DRN) Suppart Vectar Machine (SYM) Neural Turing Machine (SYM)

peicie e slee s

Original Copyright by Asimovinstitute.org See original here




Machine Learning: we only scratched the surface

ﬁ“

Deep Learning:
Many intermediate layers between
input and output

Olivier J. Brousse 3/26/2020




Limitations of neural nets

= Black box, unexplainable
=  Critique: Its just associations and
curve fitting

= No concept of causality

B 19

TR L
'-'*."14'3" ',;' L |

] Peg -
.' wi “ed i
-

Visualization with T-SNE

) /_3 ) 5
Olivier J. Brousse 3/26/2020 /JL\(I -




Advertising: Consumer preferences, movie recommendations, etc ...

NLP Speech recognition, translation, document generation, chatbots (Alexa, Siri, ...)
Autonomous driving

Just type Al in your favorite search box! Al powered this, Al powered that! © ® ©
Beware the hype! Not even close to passing Turing Test (imho), forget about AGI!

https://talktotransformer.com/ Amazing, but ... B o e son e A g

Hype: Caveat Emptor!



https://talktotransformer.com/

Hardware and programming frameworks
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Hardware

CPU
GPU
USB TPU dongle

Google Colabs, Azure, AWS, ... free time in
some cases

Edge Al

Google Coral Board

GAPS enables AI at the very Edge Markt&Technik

A highly integrated MCU combining a 8 core parallel compute cluster and a single core donfotkrt ronik

High compute at ultra-low-power i! 3 - ]
B ... r =\
g i —

03 Flexible

Google TPU on cloud

Gap 8 SoC

4
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Hardware

LR e o i Flying with Gestures Patrick Poirier
PoseNet Pi4 + Google Coral 20FPS with posenet
https://qgitter.im/ArduPilot/VisionProjects

3DVig
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https://gitter.im/ArduPilot/VisionProjects

Programming options

Python, Raw C/C++/CUDA, .... ® Ke ras

Keras: Tensorflow API, multibackend

(tensorflow, CNTK, Theano) tf.keras: P Y T R C H

Tensorflow only, integrated in TensorFlow
Very powerful despite simplicity

TensorFlow (Google), PyTorch (Facebook) N L\
both Open Source) |
HAL (GPU, CPU, TPU, X on cloud ) No worries
about underlying hardware.

S Caffe2 4o Chainer M/L LibSVM

Rich ecosystems

MATLAB 3 Sgnisve  @dxnet S ﬁ':ﬂ
Also Tensorflow Lite, TinyML (Arduino Nano
and STM32!) MW S5 dradserssae  OPyTorch  §SAS  SIEMENS

ONNX (Open Neural Network Exchange) for o . TensorFlow
sharing and framework interoperability, |
import/export to/from cloud
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Programming options, advanced custom networks:

Tensorflow Or PyTorch: <- 75% research papers (? ...)

PyTorch and Tensorflow revolve around tensors
generalization of matrices (n,m) dimensions to (n,m,o, )

Example: 1980x1080x3 channel RGB image: 3d tensor.
Video: 1980x1080x(3 channel RGB) x frame#: 4D tensor

Autodiff (TensorFlow), autograd (PyTorch): Dynamic
computation graph keeping track of operations for most
efficient gradient computations (Jacobians ...)

PYTHRCH
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Keras: Couple simple examples to show how easy it can be to get started

FashionMnist with MLP
Cifar10 with Resnet Conv. net
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Supervised Learning or Reinforcement Learning

Simulation or simulation+real world

.
&
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Drones for Research and Indust

<



Autonomous Driving, rovers

= NVIDIA: LaneNet, WaitNet, SignNet

= LightNet, ClearSightNet
= Ride in NVIDIA Self-driving Car:

=  https://www.youtube.com/watch?v=1W9q5SjalTc

Olivier J. Brousse 3/26/2020



https://www.youtube.com/watch?v=1W9q5SjaJTc

Driving Datasets

Berkeley Deep Drive BDD 100k

Baidu ApolloScope Dataset

Comma.Al Dataset

Oxford’s Robotic Car Dataset
Cityscapes Dataset

Kitti Dataset

Ford Campus Vision And Lidar Dataset
Motion-based Segmentation And Recognition Dataset
TuSimple Dataset

CMU Visual Localization Dataset
CCSAD Dataset

Kul Belgium Traffic Sign Dataset

Berkeley dataset, annotated

MIT Age Lab Dataset

Lisa: Intelligent & Safe Automobiles, UCSD
Datasets

Udacity Challenge Datasets

NCLT Datasets

DIPLECS Autonomous Driving Datasets
Velodyne SLAM Dataset

Daimler Urban Segmentation Dataset

The Uah-driveset

DAVIS Driving Dataset 2017 (DDD17)
Berkeley Deepdrive (BDD) Driving Model
MIT-AVT: Autonomous Vehicle Technology

https://sites.google.com/site/yorkyuhuang/
Kang et al. 2019



https://sites.google.com/site/yorkyuhuang/

End to end supervised learning

ALVINN, CMU, 1989

What’s Hidden in the Hidden Layers?

The contents can be easy to find with a geometrical problem,
but the hidden layers have yet to give up all their secrets

David S. Touretzky and Dean A. Pomerleau

tions, we fed the network road images
taken under a wide variety of viewing an-
gles and lighting conditions. It would be
impractical to try to collect thousands of
real road images for such a data set. In-
stead, we developed a synthetic road-
image gencrator that can create as many
training examples as we need.

milliseconds on the Sun-3/160 worksta-
tion installed on the NAVLAB.

The hidden-layer representations AL-
VINN develops are interesting. When
trained on roads of a fixed width, the net-

AUGUST 1989 « BYTE 231

work chooses a representation in which
hidden units act as detectors for complete
roads at various positions and orienta-
tions. When trained on roads of variable

continued

ALVINN
Architecture

45 Direction
Qutput Units

Road Intensity
Feedback Unit

8x32 Range Finder
Input Retina

30x32 Video
Input Retina

To train the network, 1200 simulated
road images are presented 40 times each,
while the weights are adjusted using the
back-propagation learning algorithm.
This takes about 30 minutes on Carnegie
Mellon's Warp systolic-array supercom-
puter. (This machine was designed at
Carnegie Mellon and is built by General
Electric. It has a peak rate of 100 million
fioating-point operations per second and
can compute weight adjustments for
back-propagation networks at a rate of 20
million connections per second.)

Once it is trained, ALVINN can accu-
rately drive the NAVLAB vehicle at
about 3% miles per hour along a path
through a wooded area adjoining the
Carnegie Mellon campus, under a vari-
ety of weather and lighting conditions.
This speed is nearly twice as fast as that
achieved by non-neural-network algo-
rithms running on the same vehicle. Part
of the reason for this is that the forward  photo 1: The NAVLAB autonomous navigation test-bed vehicle and the road used
pass of a back-propagation network can  for trial runs. :
be computed quickly. It takes about 200 ° Lt

Pomerleau, 1989

3DVistas
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Q@ Qutput: vehicle control

1
Fully-connected layer
[ B0neurons ] Fully-connected layer

End to end learning — s

feature map
64@1x18

3x3 kemel Convolutional

feature map
64@3x20

3x3 ki |
xS kerne Convolutional

feature map
48@5x22

= Nvidia, 2016. Input: road images, output: steering

5x5 kernel
Convolutional
feature map
36@14x47

5x5 kemel Convolutional

feature map
24@31x98

X5 kemel Normalized
pr f input planes
— 3@66x200
[ Normalization ]
I
Input planes
f 3@66x200

Nvidia, 2016
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Drone Forest Trail Autonomous Navigation, 2016
http://people.idsia.ch/~giusti/forest/web/

trail LO - Input layer: 3 maps of 101x101

S_cam
|_cam
‘hég L1 - Convolutional ¥
Layer: 32 maps of | J/
Top view 98x98 neurons.
Filter: 4x4

* Training examples acquired with 3 Gopros,
8 hours of video, 7km of trails, 20k+ images

49x49 neurons.

L2 - MaxPooling g TV
Layer: 32 mapsof% ] W y,;
TEEY B :

= Convnet: 10 layers, 150k Weights, 500k hemioe
Neurons, 57 Million Connectlons Layer 32 maps of

e —— » o . 46x46. Filter 4x4

L4 - MaxPooling Layer: 32 maps of 23x23. Kemel: 2x2 mé?% %%%@;mﬁm

* Parrot drone with net running on laptop Via 5. conautonaiteyer s2maps ot 2000, Fiter e ESESESIE A gmam

WIfl L6 - MaxPooling Layer: 32 maps of 10x10 neurons. Kernel: 2x2 it i R L]

= Expe riments alo made with onboard L7 - Convolutional Layer: 32 maps of 8x8 neurons. Filter: 4x4 R T
H H L8 - MaxPooling Layer: 32 maps of 4x4 neurons. Kernel: 2x2 stz

Odroid-U3, 15fps achieved ing Lay s araca

L9 - Fully Connected Layer: 200 neurons e e e

L10 - Output Layer: 3 neurons

IRIDUZIEET 3DVistas
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DroNet, Learning to fly by driving, 2018

http://rpg.ifi.uzh.ch/docs/RAL18_Loquercio.pdf

= ResNet architecture, trained with Keras/Tensorflow

= Split output: Steering Angle, Collision probability

(a) Udacity dataset

= Two training datasets: Udacity car driving, 70k images for steering angle
prediction; Gopro on bicycle handlebar, 32k images, manually

annotated, for collision probability.

= Parrot Bebop; Velocity controlled from Core 17 laptop via wifi

(b) Collected dataset

Oliivier J. Brousse 3/26/2020 / NP \'_‘/W/Jux

: RESBLOCK 3|

1x1 conv, 128, /2

RES BLOCK
<& /B
Steeringangle .:,-' RelU
; i
' weights
> H
«w !
Prob. colision 51\1



https://www.youtube.com/watch?v=ow7aw9H4BcA Code, datasets open sourced.
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https://www.youtube.com/watch?v=ow7aw9H4BcA
https://www.youtube.com/watch?v=ow7aw9H4BcA
https://www.youtube.com/watch?v=ow7aw9H4BcA

Pulp-DroNet, 2019

https://github.com/pulp-platform/pulp-dronet/ https://www.youtube.com/watch?v=57Vy5cSvnaA

&

= Crazyflie 2.0 with Pulp-Shield open hardware

= 27g, power draw < 300mw, 6 Fps visual processing
= Gap 8 SoC, 8 core, Greenwave Technologies

= Same network architecture as before, tweaked:
Quantization (float32 to Fixed16), receptive field
from max pooling layers size from 3x3 to 2x2

~ p —— ™ —— -— - NS — .

Shared L1 Memory
64KB
Shared-L1 Interconnect

. oreg Core; |l Core.
. cores j corer

RISC-V Cores Interconnect
s
ECANCE WIETTTE
EMEETN ErErm
e e e
2 olg=og ﬂunnu:’:‘;'

Oom D) ——— -
sogtocors [ Watteom g ol Shared Instruction Cache
N ) i

e » PULP CLUSTER

Platfor

SoC Interconnect
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https://github.com/pulp-platform/pulp-dronet/
https://github.com/pulp-platform/pulp-dronet/
https://github.com/pulp-platform/pulp-dronet/
https://github.com/pulp-platform/pulp-dronet/
https://github.com/pulp-platform/pulp-dronet/

Pulp-DroNet, 2019

https://github.com/pulp-platform/pulp-dronet/

Copyright 2019© ETH zUrich

Olivier J. Brousse 3/26/2020 A
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https://github.com/pulp-platform/pulp-dronet/
https://github.com/pulp-platform/pulp-dronet/
https://github.com/pulp-platform/pulp-dronet/
https://github.com/pulp-platform/pulp-dronet/
https://github.com/pulp-platform/pulp-dronet/

Nvidia Red Tail, GSOC 2018 Ardupilot port

root@exmachina: ~ws
1

root@exmaching: ~ws 102x69
Wl [Gui errer
avat 3436

major code: 130 (Unknown), minor code:
rn] [Guilface.cc:117] QXcbCoanection: XCB error
16573, resource id: 3436,

3436
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See also: SKYDIO

=  Posts on Medium:
- “Inside the mind of the Skydio 2”
- ” Deep Neural Pilot on Skydio 2”

*  CNN for 3D Map from redundant stereo pairs?

=  CNN for Object tracking?
= -?
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Reinforcement Learning

= Explore space: Fly randomly

’| Agent |

= Crash, Hit/Avoid obstacle: Penalty/Reward o |

= Rinse and repeat, 1000’s of times and

learn optimal policy

AirLearning

Built on top of AirSim and OpenGym
https://github.com/harvard-edge/airlearning

s, | R

R
P

G

action
A,
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https://github.com/harvard-edge/airlearning

Training entirely in simulation

Collision ~
E Ewithwall &* al ;j Tl Irr

N - Fly through door

- Navigate in corridor

T
7 3RS
|} '\!l ‘
L R ‘n
Collision
with Furniture

Action

Environment
feedback

Deep RL (VGG16)
Training with Blender
generated environment images

VGG-16 Net. Randomize examples

with different textures, lighting, objects,
etc ... to be able to generalize to

real world

e




DeepRL (Cont) 2019

https://github.com/gkahn13/GTS

Generalization through Simulation: Integrating Simulated and Real Data into Deep
Reinforcement Learning for Vision-Based Autonomous Flight, 2019

BitCraze Crazyflie

Berkeley Al Research (BA

Olivier J. Brousse 3/26/2020 A= JRALP \_/UDUL\@ 3DVista



https://github.com/gkahn13/GTS

DeepRL (cont). See also:

“Autonomous Navigation via Deep
Reinforcement Learning for Resource
Constraint Edge Nodes Using Transfer

Learning” , Oct. 2019 (DJI Tello)
https://github.com/aqgeelanwar/DRLwithTL_real

Learning to Seek: Autonomous Source
Seeking with Deep Reinforcement Learning
Onboard a NanoDrone Microcontroller
Using Transfer Learning”, Sep 2019
(CrazyFlye)

https://github.com/harvard-edge/source-seeking

“Learning to fly by crashing”, 2017,
https://youtu.be/ul51hJaGKUo

Olivier J. Brousse 3/26/2020 A= IR(LP \_/UDUL\@
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Significant interest by the research community given input
simplicity yet problem complexity

Difficult for SLAM and visual odometry
Challenges:

- Dynamic environment

- Drift withvisual odometry

- Speed

- Limited onboard compute resources

2 =



Drone Racing: Competitions

AlphaPilot - Lockheed
Martin Al Drone Racing
Innovation Challenge

AlphaPilot is the first large-scale open innovation challenge of its
kind focused on advancing artificial intelligence (Al) and
autonomy.

reomie

Stage: Prize:
2020 Season Coming Soon! $2,250,000

L\ O
N\

K-/ /7 > - { AR e N
FlightGoggles https://github.com/mit-fast/FlightGoggles

= AlphaPilot. Pre-qualification with code sent to Lockeed
Martin running on FlightGoggles simulator

= IROS ADR (Autonomous Drone Race) International
Conference on Intelligent Robots and Systems

PR 541N
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https://github.com/mit-fast/FlightGoggles

Drone Competitions

Competion at NeuRIPS 2019: Game of Drones

Based on AirSim
https://github.com/microsoft/AirSim-NeurlPS2019-Drone-Racing
https://microsoft.github.io/AirSim-NeurlPS2019-Drone-Racing/

(Presentation, overview of participants approach, participants reports)

Olivier J. Brousse 3/26/2020



https://github.com/microsoft/AirSim-NeurIPS2019-Drone-Racing
https://microsoft.github.io/AirSim-NeurIPS2019-Drone-Racing/

Teaching UAVs to race (KAUST)

= “Teaching UAVs to Race: End-to-End Regression of Agile Controls

in Simulation, 2018”

= ‘“Learning a Controller Fusion Network by Online Trajectory

Filtering for Vision-based UAV Racing”, 2019
https://www.youtube.com/watch?v=hGKIE5X9Z5U,

https://www.youtube.com/watch?v=9cbjOmKwbUY

= End to end via imitation learning

=  Training and running on photo-realistic simulation, SIM4cv on top
of UnReal, https://sim4cv.org/

Olivier J. Brousse 3/26/2020
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https://www.youtube.com/watch?v=hGKlE5X9Z5U
https://www.youtube.com/watch?v=9cbjOmKwbUY
https://sim4cv.org/

Teaching UAVs to race (KAUST)

Your Time

00:08.06
. lapi1/2
Last Lap * 00:00:00
Best Lap * 00:00.00

. T Y Ne w:12.23

Conservative PID Controller ; Aggressive PID Controller

7 N
. . \ |
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ETH Zurich http://rpg.ifi.uzh.ch/research_drone_racing.html

=  “Beauty and the Beast: Optimal Methods Meet Learning for Drone”, 3/2019
=  “Deep Drone Racing: from Simulation to Reality with Domain Randomization”, 11/2019

=  Predicted waypoints in local body frame with CNN then fed to planner and tracker

MLP —
MLP —
Training samples: Output: 4 |
. Mean and Variance of
Collected via measurement distribution describing next
with manual flying ate pose estimate
istribution
7 ARDUP @) :
Olivier J. Brousse 3/26/2020 A= I NEAT SV 3DVistas



http://rpg.ifi.uzh.ch/research drone racing.htmi

3rd person view 1st person view
(predicted gate pose overiaid)
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https://arxiv.org/abs/1909.06993

“Learning Controls Using Cross-Modal Representations: Bridging Simulation and Reality
for Drone Racing”, 9/2019

Neural net used: variational autoencoder. Training of VA forces hidden representation to
be as close as normally distributed as possible. => can reconstruct from arbitrary
samples( Variational Autoencoders Tutorial).

Training Input/output: Cross modal: RGB image (Airsim), (body frame spherical
coordinates and yaw), Dronet architecture, Resnet used.

Training sample generation: Use planner, one gate ahead horizon, 14k data points

Image Imaginary images from latent space interpolation
a

, Image,

r 6 () v

b) 7.14 22.92 103.13 4 -40.1
/ / = \ /
[
z
2048 1 343848 ; ,
la Iy Ia Iy la Iy la Iy

[meter]
[deg]
[deg]

74.48 L ? -166.2



https://arxiv.org/abs/1909.06993
https://arxiv.org/abs/1909.06993
https://arxiv.org/abs/1909.06993
https://towardsdatascience.com/variational-autoencoders-vaes-for-dummies-step-by-step-tutorial-69e6d1c9d8e9

https://arxiv.org/pdf/1809.05958.pdf

TU-Delft, Delft University of Technology, The Netherlands
Parrot Bebop with Paparazzi autopilot (Cortex A9, “dual core only”)

Light-weight, not CNN, gate detection vision algorithm

Beat ETH and won Alphapilot 2019 ($1 million)

So there! ©
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https://arxiv.org/pdf/1809.05958.pdf
https://arxiv.org/pdf/1809.05958.pdf
https://arxiv.org/pdf/1809.05958.pdf
https://arxiv.org/pdf/1809.05958.pdf

“A survey of deep learning techniques for autonomous driving”, Oct. 2019,
https://arxiv.org/pdf/1910.07738.pdf

“A Review on loT Deep Learning UAV Systems for Autonomous Obstacle Detection
and Collision Avoidance”,Sep 2019, https://www.mdpi.com/2072-4292/11/18/2144

“A Review of Deep Learning Methods and Applications for Unmanned Aerial
Vehicles”, 2017, https://www.hindawi.com/journals/js/2017/3296874/

Also of interest: Papers with code, https://paperswithcode.com/sota, if you want to
check out the latest and greatest.
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https://arxiv.org/pdf/1910.07738.pdf
https://www.mdpi.com/2072-4292/11/18/2144
https://www.hindawi.com/journals/js/2017/3296874/
https://paperswithcode.com/sota

Recommended books

OREILLY S,

Hands-on

Machine Learning
= Applied: with Scikit-Learn,

Keras & TensorFlow

Concepts, Tools, and Techniques
to Build Intelligent Systems

Y DEEP LEARNING

lan Goodfellow, Yoshua Bengio,
and Aaron Courville

Theoretical deep dive,

bible status: !
2% AN 7\4 /
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Thank you!
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