
AI For Ardupilot Developers
Neural Networks

OlivierJB
2020 Ardupilot Developer Conference

▪ Definition of intelligence? Many! None perfect

▪ One simple definition of intelligence, but has issues :

The ability to acquire and apply knowledge and skills.” (Dictionary)

▪ Ability to acquire … : “Machine learning”

▪ Lack of precise definition unfortunately contributes to misunderstandings and hype.

▪ What’s AI, what’s not?

▪ Sometimes overused and hyped buzzword

▪ Lack of precise definition =>

▪ Difficult to design benchmarks that cannot be gamed

▪ Performance on specific benchmark does not necessarily indicate general performance

▪ Can lead to inflated claims or interpretations

▪ R. J. Sternberg [1]: “Viewed narrowly, there seem to be almost as many definitions of intelligence as there were experts asked to define
it”. Legg & Hutter, “A Collection of Definitions of Intelligence”, lists over 70 definitions[2]

Olivier J. Brousse 3/26/2020 2

▪ Symbolic (Good Old Fashion AI)

▪ Objects are represented with symbolic data structures, behavior is explicitly programmed

Objects: Attributes and methods class animals, subclass dog, cat, …
▪ Behavior: if x in animals then … control flow if, while, for, …

Olivier J. Brousse 3/26/2020 3

▪ Subsymbolic, neuroscience inspired

▪ Objects are represented over a large number of simple interconnected processing units,
symbols and behavior emerge

dogs = [0.2 0 0 0.6 0 0 0 0 3.2 0 0 0 0]

cats = [0.3 0 0 1.2 0 0 0 0 2.1 0 0 0 4.3]

Symbols and learned behavior emerges

animals == [0.7 0 0 1.8 0 0 0 0 0 .3 0 0 .14]

▪ Idea of intelligent machines almost or as old as computers

▪ Two approaches as old:

▪ Turing machines, 1936, Turing Test, 1950 (“Symbol Processing”)

▪ McCullogh and Pitts, 1943 “Subsymbolic Processing, NeuroScience inspired” :

Olivier J. Brousse 3/26/2020 4

McCullogh and Pitts 1943 Turing, 1936

Collosus Computer, 1943

Peter Dey

▪ Brain: ~ 86 * billion neurons, 100 Trillion synapses

▪ 100,000 miles nerve fibers. And … an absolute mess!

▪ Very poorly understood

Olivier J. Brousse 3/26/2020 5

Golgi, Cajal 1906 Nobel Prize

Hundreds of different nerve cells

Connectomics: 1 mm3 from actual microscopy of
30nm thick slices of actual rat brain. Lichtmann

▪ McCullogh and Pitts Model, 1943

Fixed connections, neurons fire (activate) when a
sufficient number of connected (via synapses) neurons fire

▪ Hebb, 1949: Learning "Cells that fire together wire together.“

Olivier J. Brousse 3/26/2020 6

McCullogh and Pitts 1943

Hebb 1949

▪ Modern form: Come up with an Objective function
measuring output errors. (Euclidian distance of response vs
desired responses for instance)

▪ Change weights (learning) to minimize objective function

▪ Frank Rosenblatt, Cornell

▪ Analog computer
implementation

Modern formalization:

Input x = x1, … , xd

Weights w = w1, … , wd

Output f x = ቊ1 (x ∗ wT) + b > 0
0 otherwise

Olivier J. Brousse 3/26/2020 7

𝑥1

𝑥𝑑

𝑥2

𝑤1

𝑤2

𝑤𝑛

▪ Gradient descent: Minimize objective function F(w) by substracting from w a fraction
(learning rate) of F(w) derivative with respect to w (gradient)

▪ Generalization to multi dimensional space

y = f(x), gradient of y with respect to x is

the Jacobian matrix J of partial derivatives:

Olivier J. Brousse 3/26/2020 8

Olivier J. Brousse 3/26/2020 9

Problem: Learn to discriminate between + and - points)

Olivier J. Brousse 3/26/2020 10

𝑥1

𝑥3

𝑥2

𝑤1

𝑤3

𝑤2
𝑂𝑢𝑡

Olivier J. Brousse 3/26/2020 11

(-2, 4) -> -1

Input Output

(2, 4) -> +1

Input Output

(4, 1) -> -1

Input Output

(6, 2) -> +1

Input Output

(1, 5) -> +1

Input Output
−2

4

𝑤1 ?

𝑤3 ?

𝑤2 ?

C

-1 or 1

Olivier J. Brousse 3/26/2020 12

?

?

?

?

?

?

▪ Perceptron convergence Theorem (Informal description):

If there is a solution, perceptron learning will converge to the solution.

Olivier J. Brousse 3/26/2020 13

import numpy as np

X = np.array([[-2,4,-1],[4,1,-1],[1,6,-1],[2,4,-1],[6,2,-1]])

#5 inputs (points in 2d + -1 bias)

y = np.array([-1,-1,1,1,1]) # 5 Targets (Plot + or - labels)

def perceptron(X, Y):

w = np.zeros(len(X[0])) # Weights to be modified

eta = 1

epochs = 20

for e in range(epochs):

for i, x in enumerate(X):

if (np.dot(X[i],w)*Y[i]) <= 0:

w = w + eta*X[i]*Y[i] #Update w with -gradient

return w

w = perceptron(X,y)

print(w) #Weights solution

After https://github.com/MaviccPRP/perceptron

Note: We use hinge loss for objective function for historical reason
HL(Output) = max (0, (1 – DesiredOutput*Output))

Loss function

https://github.com/MaviccPRP/perceptron

Olivier J. Brousse 3/26/2020 14

import numpy as np

X = np.array([[-2,4,-1],[4,1,-1],[1,6,-1],[2,4,-1],[6,2,-1]])

#5 inputs (points in 2d + -1 bias)

y = np.array([-1,-1,1,1,1]) # 5 Targets (Plot + or - labels)

def perceptron(X, Y):

w = np.zeros(len(X[0])) # Weights to be modified

eta = 1

epochs = 20

for e in range(epochs):

for i, x in enumerate(X):

if (np.dot(X[i], w) * Y[i]) <= 0:

w = w + eta*X[i]*Y[i]

return w

w = perceptron(X,y)

print(w) #Weights solution

After https://github.com/MaviccPRP/perceptron

Error measured with hinge loss function:
HL(Output) = max [0, (1 – DesiredOutput*Output)]

HL (wX[i]) = max [0, (1 – Y[i] * wX[i])]

dHL (w)/dw = d(max[0, 1 – (Y[i] * wX[i]))/dw

= 0 if 1-Y[i] * wX[i] > 0
= - eta * (– X[i]Y[i]) if 1-Y[i]*wX[i] <= 0

Output

Gradient (Error) {

{

Gradient

https://github.com/MaviccPRP/perceptron

Olivier J. Brousse 3/26/2020 15

▪ What about other functions?

▪ How about Boolean operations?

▪ AND ? √ OR ? √

▪ XOR ? X No can do!

▪ Need linear separability

▪ Expectations were inflated

Minsky & Papert, 1969

Olivier J. Brousse 3/26/2020 16

▪ Development of what is now called GOFAI (Good Old Fashion AI)

▪ Reinforcement Learning Expert systems, probabilistic models, use of Markof decision
processes, models of reasoning, natural language processing, Search algorithms, etc …

▪ But: Inflated expectations also!

▪ => First “AI Winter”:

Olivier J. Brousse 3/26/2020 17

▪ PDP Group: Multi disciplinary group of researchers.

▪ Key contributions:

▪ Learning with Backpropagation*, for multilayer networks, with eg sigmoid squash ,

▪ Recurrent network architecture allowing processing in time (Backpropagation through time)

▪ Restricted Boltzmann machines, Boltzmann machines, …

▪ Many applications: Linguistic morphology, sentence processing, speech perception.

▪ Formulation of Subsymbolic (vs symbolic AI) theory of mind:

Massively distributed representations Graceful degradation Noise resistance

Processed in parallel Symbols emerge from patterns of activation

Rumelhart, McClelland
and the PDP Group, 1986

*Independently discovered, prior art: Werbos, others

Hinton and Anderson,
1981

▪ Use sigmoid or similar to allow for gradients

▪ General Idea: Use the chain rule for derivatives:

▪ F(x) = f (g(x)) => F’(x) = f’(g(x)) * g’(x) Use multivariable calculus: Jacobian to correct
weight error.

▪ Store weight values on forward pass, then propagate error backward towards previous
layers and change weights

Olivier J. Brousse 3/26/2020 18

▪ Theoretical result:

Any continuous function can be learned with

arbitrary precision with a neural network with one

hidden layer (given enough hidden units)

Olivier J. Brousse 3/26/2020 19

▪ Harder classification Problem that the perceptron
we saw earlier cannot solve:

http://playground.tensorflow.org/#activation=relu&batchSize=10&dataset=spiral®Dataset=reg-plane&learningRate=0.01®ularizationRate=0&noise=0&networkShape=8&seed=0.69254&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=true&xSquared=true&ySquared=true&cosX=false&sinX=true&cosY=false&sinY=true&collectStats=false&problem=classification&initZero=false&hideText=false

Olivier J. Brousse 3/26/2020 20

https://playground.tensorflow.org/
https://playground.tensorflow.org/

Olivier J. Brousse 3/26/2020 21

▪ Temporal learning and processing of data sequences in time

General Idea: Use recurrent connections from hidden layer back to itself; Combine input
layer at time t with hidden layer at time t-1

Raimi Karim

Olivier J. Brousse 3/26/2020 22

▪ NNs are data hungry, too little data

▪ NNs are compute hungry, too little compute

▪ Hype and over promises

Olivier J. Brousse 3/26/2020 23

▪ Yann Lecun, Bell Labs
▪ Handwritten digit recognition

Olivier J. Brousse 3/26/2020 24

▪ Hierarchical processing, inspired by some cells in visual cortex: Some cells respond
specifically to certain features like edges => Filters

▪ Idea: Intermediate layers detect features increasingly more complex

▪ Two new kind of layers: Convolution and pooling layers

Olivier J. Brousse 3/26/2020 25

Pooling

Central to signal processing, filters

01/05/2018 www.easy-tensorflow.com 26

Convolution

𝐂𝐨𝐧𝐭𝐢𝐧𝐮𝐨𝐮𝐬: 𝐟 ∗ 𝐠 𝐭 = න 𝐟 𝛕 𝐠 𝐭 − 𝛕 𝐝𝛕

01/05/2018 www.easy-tensorflow.com 27

Convolutions

Padding; Stride (step)

𝐃𝐢𝐬𝐜𝐫𝐞𝐭𝐞: 𝐟 ∗ 𝐠 𝐧 = ෍𝐟 𝐦 𝐠[𝐧 −𝐦]

𝐂𝐨𝐧𝐭𝐢𝐧𝐮𝐨𝐮𝐬: 𝐟 ∗ 𝐠 𝐭 = න 𝐟 𝛕 𝐠 𝐭 − 𝛕 𝐝𝛕

Vertical and horizontal edge filters

Olivier J. Brousse 3/26/2020 28

Translation Invariance

Scale Invariance

Rotation Invariance

Resistance to Noise

http://yann.lecun.com/exdb/lenet/index.html

http://yann.lecun.com/exdb/lenet/index.html

Olivier J. Brousse 3/26/2020 29

Aspect Ratio Invariance

Weirdos

Stroke Width Invariance

Weirdos

http://yann.lecun.com/exdb/lenet/index.html

http://yann.lecun.com/exdb/lenet/index.html

Olivier J. Brousse 3/26/2020 30

▪ Hochreiter & Schmidhuber, 1991, 1995

▪ Long Short Term Memory. “Selectively remember or forget”

▪ Later used with sequence to sequence networks:

Animation credit: Raimi Karim

Olivier J. Brousse 3/26/2020 31

Olivier J. Brousse 3/26/2020 32

Olivier J. Brousse 3/26/2020 33

Olivier J. Brousse 3/26/2020 34

▪ Most is supervised Learning, but let’s not forget:

▪ Unsupervised Learning eg autoencoders
▪ Reinforcement Learning

Olivier J. Brousse 3/26/2020 35

▪ Rich AI history from the 50’s

▪ In its simplest form:
▪ Agent evolves in environment of states, performing actions leading to successive

states, following a policy with rewards and penalties

▪ Learning consists in finding best policy maximizing rewards

▪ It is possible to learn policy with neural network.

Olivier J. Brousse 3/26/2020 36

▪ Learn policy from raw pixels
▪ Well worth a close look:

130 lines Python implementation

Start

http://karpathy.github.io/
http://karpathy.github.io/
http://karpathy.github.io/

Olivier J. Brousse 3/26/2020 37

▪ Learn policy from raw pixels
▪ Well worth a close look:

130 lines Python implementation

Start

Final

~ ¾ training

http://karpathy.github.io/
http://karpathy.github.io/
http://karpathy.github.io/

38

Neural Nets: Many architectures

Residuals Networks (ResNet)

GANS: Generative Adversarial Networks (two networks)

Attention networks

Auto encoders (Unsupervised learning)

Variational Autoencoders

Restricted Boltzman machines

Boltzman Machines

…

39

Asimof Institute

Olivier J. Brousse 3/26/2020 40

Symbolic LearningBrain inspired: Sub-Symbolic Learning

Support Vector Machines

Decision Trees

Ensemble Learning

Clustering

Principle Component Analysis

Convolutional Neural Networks (CNNs)

Multi-Layer Neural Networks

Boltzman Machines

Restricted Boltzman Machines

Auto Encoders

Reinforcement Learning

Bayesian Networks

Supervised Learning, Unsupervised Learning, Reinforcement Learning

Linear and logistic regression

Linear ProgrammingTransformer Networks

Multi-Layer Perceptrons (MLPs)

Generative Adversarial Networks (GANs)

Deep Learning:
Many intermediate layers between
input and output

Deep Belief Networks

Olivier J. Brousse 3/26/2020

▪ Black box, unexplainable

▪ Critique: It’s just associations and
curve fitting

▪ No concept of causality

Visualization with T-SNE

Olivier J. Brousse 3/26/2020 42

▪ Advertising: Consumer preferences, movie recommendations, etc …

▪ NLP Speech recognition, translation, document generation, chatbots (Alexa, Siri, …)

▪ Autonomous driving

▪ Just type AI in your favorite search box! AI powered this, AI powered that! ☺  ☺

▪ Beware the hype! Not even close to passing Turing Test (imho), forget about AGI!

▪ https://talktotransformer.com/ Amazing, but …

https://talktotransformer.com/

Olivier J. Brousse 3/26/2020 43

Olivier J. Brousse 3/26/2020 44

▪ CPU

▪ GPU

▪ USB TPU dongle

▪ Google Colabs, Azure, AWS, … free time in
some cases

▪ Edge AI

Intel Movidius

Nvidia Jetson Nano

USB Google Coral

Google Coral Board

Google TPU on cloud
Gap 8 SoC

Olivier J. Brousse 3/26/2020 45

Flying with Gestures Patrick Poirier
Pi4 + Google Coral 20FPS with posenet
https://gitter.im/ArduPilot/VisionProjects

PoseNet

https://gitter.im/ArduPilot/VisionProjects

Olivier J. Brousse 3/26/2020 46

▪ Python, Raw C/C++/CUDA, …. 

▪ Keras: Tensorflow API, multibackend
(tensorflow, CNTK, Theano) tf.keras:
Tensorflow only, integrated in TensorFlow
Very powerful despite simplicity

▪ TensorFlow (Google), PyTorch (Facebook)
both Open Source)

▪ HAL (GPU, CPU, TPU, X on cloud) No worries
about underlying hardware.

▪ Rich ecosystems

▪ Also Tensorflow Lite, TinyML (Arduino Nano
and STM32!)

▪ ONNX (Open Neural Network Exchange) for
sharing and framework interoperability,
import/export to/from cloud

Olivier J. Brousse 3/26/2020 47

▪ Tensorflow Or PyTorch: <- 75% research papers (? …)

▪ PyTorch and Tensorflow revolve around tensors,
generalization of matrices (n,m) dimensions to (n,m,o, …)

▪ Example: 1980x1080x3 channel RGB image: 3d tensor.
Video: 1980x1080x(3 channel RGB) x frame#: 4D tensor

▪ Autodiff (TensorFlow), autograd (PyTorch): Dynamic
computation graph keeping track of operations for most
efficient gradient computations (Jacobians …)

Olivier J. Brousse 3/26/2020 48

▪ FashionMnist with MLP
▪ Cifar10 with Resnet Conv. net

Olivier J. Brousse 3/26/2020 49

Olivier J. Brousse 3/26/2020 50

▪ Supervised Learning or Reinforcement Learning

▪ Simulation or simulation+real world

Olivier J. Brousse 3/26/2020 51

▪ NVIDIA: LaneNet, WaitNet, SignNet

▪ LightNet, ClearSightNet

▪ Ride in NVIDIA Self-driving Car:

▪ https://www.youtube.com/watch?v=1W9q5SjaJTc

Olivier J. Brousse 3/26/2020 52

https://www.youtube.com/watch?v=1W9q5SjaJTc

▪ Berkeley Deep Drive BDD 100k
▪ Baidu ApolloScope Dataset
▪ Comma.AI Dataset
▪ Oxford’s Robotic Car Dataset
▪ Cityscapes Dataset
▪ Kitti Dataset
▪ Ford Campus Vision And Lidar Dataset
▪ Motion-based Segmentation And Recognition Dataset
▪ TuSimple Dataset
▪ CMU Visual Localization Dataset
▪ CCSAD Dataset
▪ Kul Belgium Traffic Sign Dataset

Olivier JBrousse 3/26/2020 53

▪ MIT Age Lab Dataset
▪ Lisa: Intelligent & Safe Automobiles, UCSD

Datasets
▪ Udacity Challenge Datasets
▪ NCLT Datasets
▪ DIPLECS Autonomous Driving Datasets
▪ Velodyne SLAM Dataset
▪ Daimler Urban Segmentation Dataset
▪ The Uah-driveset
▪ DAVIS Driving Dataset 2017 (DDD17)
▪ Berkeley Deepdrive (BDD) Driving Model
▪ MIT-AVT: Autonomous Vehicle Technology

Berkeley dataset, annotated Udacity dataset

https://sites.google.com/site/yorkyuhuang/
Kang et al. 2019

https://sites.google.com/site/yorkyuhuang/

▪ ALVINN, CMU, 1989

Olivier J. Brousse 3/26/2020 54

Pomerleau, 1989

▪ Nvidia, 2016. Input: road images, output: steering

Olivier J. Brousse 3/26/2020 55

Nvidia, 2016

Olivier J. Brousse 3/26/2020 56

▪ Training examples acquired with 3 Gopros,
8 hours of video, 7km of trails, 20k+ images

▪ Convnet: 10 layers, 150k Weights, 500k
Neurons, 57 Million Connections

▪ Parrot drone with net running on laptop via
wifi

▪ Experiments alo made with onboard
Odroid-U3, 15fps achieved

Olivier J. Brousse 3/26/2020 57

Success (top) and failures (bottom)

Olivier J. Brousse 3/26/2020 58

▪ ResNet architecture, trained with Keras/Tensorflow

▪ Split output: Steering Angle, Collision probability

▪ Two training datasets: Udacity car driving, 70k images for steering angle
prediction; Gopro on bicycle handlebar, 32k images, manually
annotated, for collision probability.

▪ Parrot Bebop; Velocity controlled from Core I7 laptop via wifi

Olivier J. Brousse 3/26/2020 59

https://www.youtube.com/watch?v=ow7aw9H4BcA
https://www.youtube.com/watch?v=ow7aw9H4BcA
https://www.youtube.com/watch?v=ow7aw9H4BcA

Olivier J. Brousse 3/26/2020 60

▪ Crazyflie 2.0 with Pulp-Shield open hardware

▪ 27g, power draw < 300mw, 6 Fps visual processing

▪ Gap 8 SoC, 8 core, Greenwave Technologies

▪ Same network architecture as before, tweaked:
Quantization (float32 to Fixed16), receptive field
from max pooling layers size from 3x3 to 2x2

Gap 8 SoC

https://github.com/pulp-platform/pulp-dronet/
https://github.com/pulp-platform/pulp-dronet/
https://github.com/pulp-platform/pulp-dronet/
https://github.com/pulp-platform/pulp-dronet/
https://github.com/pulp-platform/pulp-dronet/

Olivier J. Brousse 3/26/2020 61

https://github.com/pulp-platform/pulp-dronet/
https://github.com/pulp-platform/pulp-dronet/
https://github.com/pulp-platform/pulp-dronet/
https://github.com/pulp-platform/pulp-dronet/
https://github.com/pulp-platform/pulp-dronet/

Olivier J. Brousse 3/26/2020 62

Olivier J. Brousse 3/26/2020 63

▪ Posts on Medium:
- “Inside the mind of the Skydio 2”
- ” Deep Neural Pilot on Skydio 2”

▪ CNN for 3D Map from redundant stereo pairs?
▪ CNN for Object tracking?
▪ --- ?

Olivier J. Brousse 3/26/2020 64

Olivier J. Brousse 3/26/2020 65

▪ Explore space: Fly randomly
▪ Crash, Hit/Avoid obstacle: Penalty/Reward
▪ Rinse and repeat, 1000’s of times and

learn optimal policy

▪ AirLearning
▪ Built on top of AirSim and OpenGym
▪ https://github.com/harvard-edge/airlearning

https://github.com/harvard-edge/airlearning

Olivier J. Brousse 3/26/2020 66

▪ Deep RL (VGG16)
Training with Blender
generated environment images

▪ VGG-16 Net. Randomize examples
with different textures, lighting, objects,
etc … to be able to generalize to
real world

Olivier J. Brousse 3/26/2020 67

▪ https://github.com/gkahn13/GTS
▪ Generalization through Simulation: Integrating Simulated and Real Data into Deep

Reinforcement Learning for Vision-Based Autonomous Flight, 2019
▪ BitCraze Crazyflie

https://github.com/gkahn13/GTS

Olivier J. Brousse 3/26/2020 68

▪ “Autonomous Navigation via Deep
Reinforcement Learning for Resource
Constraint Edge Nodes Using Transfer
Learning” , Oct. 2019 (DJI Tello)
https://github.com/aqeelanwar/DRLwithTL_real

https://github.com/harvard-edge/source-seeking

▪ “Learning to fly by crashing”, 2017,
https://youtu.be/u151hJaGKUo

▪ Learning to Seek: Autonomous Source
Seeking with Deep Reinforcement Learning
Onboard a NanoDrone Microcontroller”
Using Transfer Learning” , Sep 2019
(CrazyFlye) “

Olivier J. Brousse 3/26/2020 69

Olivier J. Brousse 3/26/2020 70

▪ Significant interest by the research community given input
simplicity yet problem complexity

▪ Difficult for SLAM and visual odometry

▪ Challenges:

- Dynamic environment
- Drift with visual odometry
- Speed
- Limited onboard compute resources

Olivier J. Brousse 3/26/2020 71

FlightGoggles https://github.com/mit-fast/FlightGoggles

▪ AlphaPilot. Pre-qualification with code sent to Lockeed
Martin running on FlightGoggles simulator

▪ IROS ADR (Autonomous Drone Race) International
Conference on Intelligent Robots and Systems

https://github.com/mit-fast/FlightGoggles

Olivier J. Brousse 3/26/2020 72

▪ Competion at NeuRIPS 2019: Game of Drones
▪ Based on AirSim
▪ https://github.com/microsoft/AirSim-NeurIPS2019-Drone-Racing
▪ https://microsoft.github.io/AirSim-NeurIPS2019-Drone-Racing/
▪ (Presentation, overview of participants approach, participants reports)

https://github.com/microsoft/AirSim-NeurIPS2019-Drone-Racing
https://microsoft.github.io/AirSim-NeurIPS2019-Drone-Racing/

Olivier J. Brousse 3/26/2020 73

▪ “Teaching UAVs to Race: End-to-End Regression of Agile Controls
in Simulation, 2018”

▪ “Learning a Controller Fusion Network by Online Trajectory
Filtering for Vision-based UAV Racing”, 2019
https://www.youtube.com/watch?v=hGKlE5X9Z5U,
https://www.youtube.com/watch?v=9cbjOmKwbUY

▪ End to end via imitation learning
▪ Training and running on photo-realistic simulation, SIM4cv on top

of UnReal, https://sim4cv.org/

https://www.youtube.com/watch?v=hGKlE5X9Z5U
https://www.youtube.com/watch?v=9cbjOmKwbUY
https://sim4cv.org/

Olivier J. Brousse 3/26/2020 74

Olivier J. Brousse 3/26/2020 75

▪ “Beauty and the Beast: Optimal Methods Meet Learning for Drone”, 3/2019

▪ “Deep Drone Racing: from Simulation to Reality with Domain Randomization”, 11/2019

▪ Predicted waypoints in local body frame with CNN then fed to planner and tracker

Output:
Mean and Variance of
distribution describing next
gate pose estimate
distribution

Training samples:
Collected via measurement
with manual flying

Olivier J. Brousse 3/26/2020 76

Olivier J. Brousse 3/26/2020 77

▪ “Learning Controls Using Cross-Modal Representations: Bridging Simulation and Reality
for Drone Racing”, 9/2019

▪ Neural net used: variational autoencoder. Training of VA forces hidden representation to
be as close as normally distributed as possible. => can reconstruct from arbitrary
samples(Variational Autoencoders Tutorial).

▪ Training Input/output: Cross modal: RGB image (Airsim), (body frame spherical
coordinates and yaw), Dronet architecture, Resnet used.

▪ Training sample generation: Use planner, one gate ahead horizon, 14k data points

https://arxiv.org/abs/1909.06993
https://arxiv.org/abs/1909.06993
https://arxiv.org/abs/1909.06993
https://towardsdatascience.com/variational-autoencoders-vaes-for-dummies-step-by-step-tutorial-69e6d1c9d8e9

Olivier J. Brousse 3/26/2020 78Copyright (c) 2016 3DVistas

▪ TU-Delft, Delft University of Technology, The Netherlands

▪ Parrot Bebop with Paparazzi autopilot (Cortex A9, “dual core only”)

▪ Light-weight, not CNN, gate detection vision algorithm

▪ Beat ETH and won Alphapilot 2019 ($1 million)

▪ So there! ☺

https://arxiv.org/pdf/1809.05958.pdf
https://arxiv.org/pdf/1809.05958.pdf
https://arxiv.org/pdf/1809.05958.pdf
https://arxiv.org/pdf/1809.05958.pdf

Olivier J. Brousse 3/26/2020 79Copyright (c) 2016 3DVistas

▪ “A survey of deep learning techniques for autonomous driving”, Oct. 2019,
https://arxiv.org/pdf/1910.07738.pdf

▪ “A Review on IoT Deep Learning UAV Systems for Autonomous Obstacle Detection
and Collision Avoidance”,Sep 2019, https://www.mdpi.com/2072-4292/11/18/2144

▪ “A Review of Deep Learning Methods and Applications for Unmanned Aerial
Vehicles”, 2017, https://www.hindawi.com/journals/js/2017/3296874/

▪ Also of interest: Papers with code, https://paperswithcode.com/sota, if you want to
check out the latest and greatest.

https://arxiv.org/pdf/1910.07738.pdf
https://www.mdpi.com/2072-4292/11/18/2144
https://www.hindawi.com/journals/js/2017/3296874/
https://paperswithcode.com/sota

Olivier J. Brousse 3/26/2020 80

▪ Applied:

Theoretical deep dive,
bible status:

Olivier J. Brousse 3/26/2020 81

Thank you!

