

Control Update

Leonard Hall

Motor Mixer Development

- Thrust lost detection
 - Increased thrust when motors are lost.
 - Hex 33% to 66%
 - Octo 50% to 66%
- Separate feedforward input
 - Better control of single and coax aerodynamic surface controlled aircraft
 - Ready for rpm gain scheduling for Helicopters
- ArduPilot motor ordering supported!!!!
- Looking forward to 2020:
 - Tri-copter motor mixer
 - ESC telemetry based motor loss support

Attitude Controller Development

- Dynamic Harmonic Notch
- PID filter design
 - Target low pass filter (FLTT)
 - Error low pass filter (FLTE)
 - D-term low pass filter (FLTD)
- Feed forward support and limiting
- Quaternion based attitude controller adoption has been smooth
- Tuning guide has been receiving positive reports
- System Identification mode
- Looking forward to 2020:
 - Yaw angle/rate for auto modes
 - Generic Auto-Tune including Feed Forward
 - Feed forward D term
 - Attitude feedback delay term

Attitude Controller Architecture

ArduCopter V4.X STABILIZE Roll, Pitch & Yaw PID's

Attitude Controller Architecture

Attitude Controller Architecture

Position Controller Development

- Little to no changes made in 2019..... But lots of work to prepare for 2020!
- Looking forward to 2020:
 - Position, Velocity and Acceleration PID objects to get filtering and general structural enhancements.
 - Rewrite of Z-Axis control law to provide additional tuning flexibility.
 - Improved limit and EKF reset handling.
 - Support for three axis feed forward architecture for Position, Velocity and Acceleration.
 - Structural changes to support a generic acceleration to attitude translation.

Navigation Controller Development

- A few structural and parameter changes but mostly transparent to the user... But lots of work to prepare for 2020!
- Looking forward to 2020:
 - Complete navigation controller rewrite
 - Trigonometric S-Curve based navigation
 - Trigonometric S-Curve based spline segment generation
 - Input shaping based Guided Mode

Navigation Controller Requirements

- Defines the straight segments
 - Smooth and efficient speed control
 - Maintains maximum speed given defined kinematic limits
- Defines the corner geometry
 - Achieve minimum distance from the waypoint
 - Smooth and efficient:
 - corner geometry,
 - speed control,
 - steering rate control.
 - Be free of sharp discontinuities and transients

The solution : S-Curve

• Jerk

- Rectangular
- Defined maximum
- Acceleration
 - Trapezoidal
 - Defined max slope
 - Defined max value
- Velocity
 - Trapezoidal with rounded corners
 - Defined max slope
 - Defined max value

But can we do better....

Jounce formulation

$J(t) = \frac{J_p}{2} \left(1 - \cos\left(\frac{\pi}{T}t\right) \right)$

Trigonometric S-Curve Profile

The Perfect Corner

What do we want from a corner?

- Follows the incoming track
- Continuous in:
 - Position
 - Velocity
 - Acceleration
 - More???
- A controlled turn rate
- A controlled distance from the waypoint
- Follows the outgoing track

Versatile, Trusted, Open

And a good corner: Two segment Trig S-Curve

Trigonometric S-Curve Corner - 90°

Trigonometric S-Curve Corner - 90°

Spline Waypoints

- Define curved segments defined by:
 - Entry and exit waypoints
 - Entry and exit velocity vectors
- Curve should be similar with different vehicle kinematic parameters but perhaps not identical.
- Curve should be optimized for maximum velocity based on vehicle kinematic parameters.
- Emphasis on not exceeding vehicle kinematic maximums.

Spline Waypoints: Three segment Trig S-Curve

Spline Waypoints: Jerk Limited Three segment Trig S-Curve

Spline Waypoints: Acceleration Limited Three segment Trig S-Curve

Spline Waypoints: Velocity Limited Three segment Trig S-Curve

2020 Advancements

- ESC feedback motor loss compensation
- Automatic Dynamic Harmonic Notch Filter (FFT Driven)
- FFD (Feed forward D term)
- Attitude Stabilisation loop delay
- Yaw angle/rate command input
- Position controller rewrite (mainly Z axis and PID filter enhancement)
- Guided mode to use feed forward with error correction time constant.
- Trigonometric S-Curve based waypoint navigation

Questions

