

Outline

- Introduction to Rotor Dynamics
- Current State of Tradheli Code
- Current Projects
 - Tuning Challenges
 - Harmonic Notch Impact on Tuning
 - Improved Command Model
 - Time Delay
 - Derivative Feedforward
- Future

Rotor Dynamics – Degrees of Freedor Versatile, Trusted, Open

- Rotor has 4 degrees of freedom
- Rotational
 - Rotates about shaft

Rotor Dynamics – Degrees of Freedor Versatile, Trusted, Open

- Rotor has 4 degrees of freedom
- Rotational
 - Rotates about shaft
- Flapping
 - Blade vertical motion
 - Provides for helicopter control

Rotor Dynamics – Degrees of Freedor Rersatile, Trusted, Open

- Rotor has 4 degrees of freedom
- Rotational
 - Rotates about shaft
- Flapping
 - Blade vertical motion
 - Provides for helicopter control
- Lead-Lag
 - Blade horizontal motion
 - Nuisance DOF with low damping

Rotor Dynamics – Degrees of Freedor Rersatile, Trusted, Open

- Rotor has 4 degrees of freedom
- Rotational
 - Rotates about shaft
- Flapping
 - Blade vertical motion
 - Provides for helicopter control
- Lead-Lag
 - Blade horizontal motion
 - Nuisance DOF
- Feathering
 - Blade pitch controlled by swashplate

Rotor Dynamics – Teetering

- Flapping hinge over shaft
 - Full scale in most cases don't have dampener
 - Model scale uses dampener to provide faster aircraft response
- Lead-lag pinned at blade grip
 - Full scale restrain lead-lag

Rotor Dynamics – Hingeless

- Flapping accomplished thru flexible blade
 - Provides faster aircraft response
- Lead-lag pinned at blade grip

Rotor Dynamics – Rotor Phase Lag

- Rotor phase lag is the change in azimuth angle from when max cyclic pitch is made to when max rotor flapping is seen
- Phase lag is 90 deg for teetering rotor system with no dampener

Rotor Dynamics – Rotor Phase Lag

- Rotor phase lag is the change in azimuth angle from when max cyclic pitch is made to when max rotor flapping is seen
- Phase lag is 90 deg for teetering rotor system with no dampener
- Tip path plane tilts creating pitching moment Thrust

Rotor Dynamics – Rotor Phase Lag

- Rotor phase lag is the change in azimuth angle from when max cyclic pitch is made to when max rotor flapping is seen
- Phase lag is less than 90 deg for teetering rotors with dampeners or hingeless rotors
- Rotor tilts aft and to the right causing roll coupling

Current State of Tradheli

- Maintenance
 - Servo library
 - Spool Logic
- Improvements/enhancements since AC 3.3.3
 - 5 point spline throttle curve
 - Wiki updates to include setup videos
 - Heli setup page in QGC and Mission Planner
 - Rotor governor
 - Swashplate library
 - Linearize swashplate servo output
 - Virtual Flybar
 - Autonomous Autorotation in SITL (Matt Kear)

New Universal Heli Setup Page

Install Firmware	C Servo Setup						Swashplate Setup		Throttle Settings		
>> Mandatan: Hardunia		Function	Min	Max	Trim	Reversed	Manual Servo Mode	Disabled \sim	Rotor Speed Control Mode	External Gov Set	tPoir 🗸
>> Mandatory Hardware	1	Motor1 -	1000 🌲	2000 🌲	1500 🌲		Swashplate Type	H3_120 ~	Critical Rotor Speed (%)	50	-
Heli Setup	2	Motor2 -	1000 ≑	2000 ≑	1500 韋		Collective Direction	Normal 🗸 🗸	Throttle Ramp Time (s)	1	÷
Frame Type	3	Motor3	1000 🜲	2000 🜲	1500 韋		Linearize Swash Servos	Disabled 🗸 🗸	Rotor Runup Time (s)	10	÷
Accel Calibration	4	Motor4	1000 🜲	2000 🜲	1500 🜲		Flybar Mode Selector	NoFlybar 🗸 🗸	External Motor Governor Setpoint (%)	70	÷
Compass	5	Disabled 🗸	1100 🌲	1900 🌲	1500 🌲		Maximum Collective Pitch (PWM)	2000 ≑	Throttle Output at Idle (%)	0	-
Radio Calibration	6	Disabled 🗸	1100 🌲	1900 🌲	1500 🌲		Zero-Thrust Collective Pitch (PWM)	1700	Throttle Curve at 0% Coll (%)	25	+
Servo Output	7	Disabled -	1100 ≑	1900 🜲	1500 🜲		Minimum Collective Pitch (PWM)	1400 🖨	Throttle Curve at 25% Coll (%)	32	÷
	8	HeliRSC -	1100 🜲	1900 🌲	1500 🚖		Maximum Cyclic Pitch Angle	2500	Throttle Curve at 50% Coll (%)	38	÷
ESC Calibration	L					•			Throttle Curve at 75% Coll (%)	50	÷
Flight Modes									Throttle Curve at 100% Coll (%)	100	÷
FailSafe	Govern	nor Settings				- Misc Settings -			L		
HW ID							ective Low (%)	÷			
ADSB	Governor Disengage Throttle (%) 25				÷	Stabilize Colle	ective Mid-Low (%) 40				
>> Optional Hardware	Goverr	Governor Droop Response (%) 30				Stabilize Collective Mid-High (%) 60					
	Govern	nor Throttle Curve Gain (%) 90		÷	Stabilize Colle	ective High (%) 100	÷			
>> Advanced	Govern	nor Operational Range (R	PM) 100		÷	Tail Type	Servo only	~			
						DDVP Tail ES	C speed (%) 50	÷			

350

0

External Gyro Gain (PWM)

Collective-Yaw Mixing

ACRO External Gyro Gain (PWM)

Rotor Governor

- Developed within the Rotor Speed Controller
- Design
 - Based on mechanical governors
 - Uses only a proportional controller based on the rotor droop (rotor speed error)
 - Throttle curve used for feedforward input
- Requires an RPM sensor
- Overwhelmingly positive response from users on governor performance

Swashplate Library

• Supports all popular swashplate types

- Available on Single and Dual heli
 - Dual can set individual swashplate types for each rotor
- Retained generic H3 swashplate
 - Enables virtual rigging adjustment through phase parameter

Swashplate Library

• Supports all popular swashplate types

- Available on Single and Dual heli
 - Dual can set individual swashplate types for each rotor
- Retained generic H3 swashplate
 - Enables virtual rigging adjustment through phase parameter
- Linearized Servo Output
 - Modifies servo arm throw to remove nonlinear movement due to arm arc
 - Critical for 4 servo swashplate

Virtual Flybar

- Designed for Acro Flight Mode
- Issues with acro mode
 - Difficult to smoothly set and adjust attitude (attitude hold gives digital feel)
 - Not easy to judge requested attitude while on the ground
- Virtual Flybar provides the short term attitude retention of a real flybarred helicopter
- Attitude error in pitch and roll is leaked off
 - On the ground, allows pilot to center the swashplate by centering the stick
 - During flight, provides a softer feel similar to a trim follow up.
- Set by having non zero ACRO_BAL_PITCH and ACRO_BAL_ROLL with ACRO_TRAINER disabled.

Tuning Challenges

- Lightly damped rotor modes for RC helicopters
- Effectiveness of feedback loops with low (<10 hz) low-pass filter cutoff frequencies
- Significant lags (~100 msec) in aircraft response
 - Rotor response time constant around 50-70 msec
 - Potentially longer lags with softer rotor systems or larger aircraft
 - Addition lag up to 50 msec or more for actuator lag
- Unrealistic target response for larger/slower aircraft

Rotor Dynamics

- Lightly damped rotor modes limit rate controller P and D gain tuning
 - Feedback loops drive rotor unstable
- Flap regressive
 - Rotor mode most likely to excite
 - Hard to compute natural frequency
 - Depends on vehicle inertia and rotor head stiffness
 - Typically frequency approximately 3 to 5 hz
- Lead-lag regressive
 - Higher frequency than flap regressive
 - Easier to compute natural frequency due to pinned blades
 - Frequency around 50% rotor speed

Rotor Dynamics

- Synergy 626 2 bladed
 - Time Delay
 - Pitch 54 ms
 - Roll 30 ms
 - Pitch flap regressive
 - Natural Freq 3.5 hz
 - Damping ratio 0.27
 - Roll flap regressive
 - Natural Freq 5.2 hz
 - Damping ratio 0.33
 - Lead-lag regressive
 - ~10 hz

- Poor disturbance rejection due to low P and D gains
- Attitude feedback is necessary to provide stronger disturbance rejection
- Rate Controller
 - Rate Feedforward (VFF) used to match actual response to requested response
 - Rate P and D gains taken to oscillation and cut in half
 - Rate I gain set to match Rate VFF gain
- Attitude Controller
 - Increase ANG_P gain to at least 6 and as high as 10 if able with no unstable oscillations
- Harmonic Notch used to clean up response signals used for rate controller

Harmonic Notch

- In most cases, rotor speed is kept constant
- Vibrations in helicopters are harmonics of the rotor speed
 - 1st Frequency rotor speed
 - 2nd Frequency N blades x rotor speed
 - 3rd Frequency 2 x N blades x rotor speed
- If rotor speed is governed, make notch bandwidth small, ~10 hz
- Result is cleaner (less noise) signals for control feedback loops (rate controller)
- Doesn't exclude need to track and balance rotor

Improving the Controller

- Shaping functions (command model) that better represent vehicle dynamics
- Account for delays in system to account for better target value (command model) comparison with aircraft response
 - Delays due to actuator lag, filters, and aircraft response
 - Requires feedforward control
- Use a derivative term on feedforward to improve vehicle response
 - Can be used as feedforward for axes that are acceleration command
 - Act as a lead filter for axes that are rate command to help system overcome lags in response

Control Law Architecture

- Explicit model following control law design
 - Command model defines desired target aircraft response
 - Inverse plant used to approximate controls required for target response
 - Feedback controller accounts for imperfect inverse plant and disturbances
 - Equivalent time delay accounts for aircraft delays to better match aircraft response

Control Law Architecture

- Copter control law design
 - User sets target (model) response through parameters that define shaping function
 - PID controllers drive actual aircraft response to target (model) response
 - Controller has no knowledge of vehicle to determine output for desired response

Command Model - Acro

- Current rate shaping
 - Acceleration limited
 - Unlimited Jerk
- Proposed rate shaping
 - 2nd order response in rate
 - Add INPUT_RATE_TC param
 - Damping ratio = 0.8
 - 1st order lag applied to jerk to provide more gradual build of initial acceleration

Command Model – Stabilize (Pitch & Route, Trusted, Open

- Current attitude shaping
 - Uses square root shaping function in attitude
- Proposed attitude shaping
 - Uses existing attitude shaping function to determine requested rate
 - Uses proposed rate shaping function to determine requested rate

- Initially desired putting time delay in both rate and attitude feedback
- For this to work well, it requires the aircraft use feedforward
 - The feedforward path initiates the movement

- Helicopters more likely to have higher delays
- Using time delay would help reduce overshoot in the PID controllers

- Helicopters more likely to have higher delays
 - Actuator lags
 - Linkage binding
- Using time delay would help reduce overshoot in the PID controllers
- Delay in rate target is 57 ms

- Helicopters more likely to have higher delays
 - Actuator lags
 - Linkage binding
- Using time delay would help reduce overshoot in the PID controllers
- Delay in rate target is 57 ms
- Delay in attitude target is 30 ms

• To be more universally usable in the code, looking at time delay only in attitude target

Derivative Feedforward

- Currently only rate feedforward gain used in rate controller
 - Heli's use it in pitch and roll axes because axes primarily rate command
 - Multi's don't use it because axes are primarily acceleration command
- Derivative feedforward
 - Used for axes that are acceleration command
 - Provide immediate commanded response
 - Can be used in rate command systems to act like a lead filter

Future

- Automated handling of engine throttle for autonomous operations
 - Mainly for Internal Combustion Engine helicopters
 - Provide for engine warm-up and cool-down in autonomous operations
- Better tuning instructions and possibly autotune
- Better I-term handling and limit handling
- Reliable fully autonomous flights from startup to shutdown
- Autonomous autorotation or at least assisted
- Clean up Tradheli specific files/improve code efficiency

